An Effective Evolutionary Hybrid for Solving the Permutation Flowshop Scheduling Problem
نویسندگان
چکیده
This paper presents an effective evolutionary hybrid for solving the permutation flowshop scheduling problem. Based on a memetic algorithm, the procedure uses a construction component that generates initial solutions through the use of a novel reblocking mechanism operating according to a biased random sampling technique. This component is aimed at forcing the operations having smaller processing times to appear on the critical path. The goal of the construction component is to fill an initial pool with high-quality solutions for a memetic algorithm that looks for even higher-quality solutions. In the memetic algorithm, whenever a crossover operator and possibly a mutation are performed, the offspring genome is fine-tuned by a combination of 2-exchange swap and insertion local searches. The same with the employed construction method; in these local searches, the critical path notion has been used to exploit the structure of the problem. The results of computational experiments on the benchmark instances indicate that these components have strong synergy, and their integration has created a robust and effective procedure that outperforms several state-of-the-art procedures on a number of the benchmark instances. By deactivating different components enhancing the evolutionary module of the procedure, the effects of these components have also been examined.
منابع مشابه
A Reliability based Modelling and Optimization of an Integrated Production and Preventive Maintenance Activities in Flowshop Scheduling Problem
Traditional scheduling problems with the batch processing machines (BPM) assume that machines are continuously available, and no time is needed for their preventive maintenance (PM). In this paper, we study a realistic variant of flowshop scheduling which integrates flow shop batch processing machines (FBPM) and preventive maintenance for minimizing the makespan. In order to tackle the given pr...
متن کاملَA Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times
This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presen...
متن کاملA Multi-objective Immune System for a New Bi-objective Permutation Flowshop Problem with Sequence-dependent Setup Times
We present a new mathematical model for a permutation flowshop scheduling problem with sequence-dependent setup times considering minimization of two objectives, namely makespan and weighted mean total earliness/tardiness. Only small-sized problems with up to 20 jobs can be solved by the proposed integer programming approach. Thus, an effective multi-objective immune system (MOIS) is ...
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کاملMILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags
In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolutionary computation
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2017